Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 11: 1283080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357293

RESUMO

Exoskeletons that assist in ankle plantarflexion can improve energy economy in locomotion. Characterizing the joint-level mechanisms behind these reductions in energy cost can lead to a better understanding of how people interact with these devices, as well as to improved device design and training protocols. We examined the biomechanical responses to exoskeleton assistance in exoskeleton users trained with a lengthened protocol. Kinematics at unassisted joints were generally unchanged by assistance, which has been observed in other ankle exoskeleton studies. Peak plantarflexion angle increased with plantarflexion assistance, which led to increased total and biological mechanical power despite decreases in biological joint torque and whole-body net metabolic energy cost. Ankle plantarflexor activity also decreased with assistance. Muscles that act about unassisted joints also increased activity for large levels of assistance, and this response should be investigated over long-term use to prevent overuse injuries.

2.
Healthcare (Basel) ; 11(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37957986

RESUMO

Falling is a major cause of morbidity, and is often caused by a decrease in postural stability. A key component of postural stability is whole-body centroidal angular momentum, which can be influenced by control moment gyroscopes. In this proof-of-concept study, we explore the influence of our wearable robotic gyroscopic actuator "GyroPack" on the balance performance and gait characteristics of non-impaired individuals (seven female/eight male, 30 ± 7 years, 68.8 ± 8.4 kg). Participants performed a series of balance and walking tasks with and without wearing the GyroPack. The device displayed various control modes, which were hypothesised to positively, negatively, or neutrally impact postural control. When configured as a damper, the GyroPack increased mediolateral standing time and walking distance, on a balance beam, and decreased trunk angular velocity variability, while walking on a treadmill. When configured as a negative damper, both peak trunk angular rate and trunk angular velocity variability increased during treadmill walking. This exploratory study shows that gyroscopic actuators can influence balance and gait kinematics. Our results mirror the findings of our earlier studies; though, with more than 50% mass reduction of the device, practical and clinical applicability now appears within reach.

3.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176139

RESUMO

Trunk motor control is essential for the proper functioning of the upper extremities and is an important predictor of gait capacity in children with delayed development. Early diagnosis and intervention could increase the trunk motor capabilities in later life, but current tools used to assess the level of trunk motor control are largely subjective and many lack the sensitivity to accurately monitor development and the effects of therapy. Inertial measurement units could yield an objective quantitative assessment that is inexpensive and easy-to-implement. We hypothesized that root mean square of jerk, a proxy for movement smoothness, could be used to distinguish age and thereby presumed motor development. We attached a sensor to the trunks of six young children with no known developmental deficits. Root mean square of jerk decreases with age, up to 24 months, and is correlated to a more established method, i.e., center-of-pressure velocity, as well as other standard inertial measurement unit outputs. This metric therefore shows potential as a method to differentiate trunk motor control levels.


Assuntos
Marcha , Movimento , Criança , Pré-Escolar , Humanos , Lactente , Monitorização Fisiológica , Extremidade Superior
4.
Curr Biol ; 32(10): 2222-2232.e5, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35537453

RESUMO

Our nervous systems can learn optimal control policies in response to changes to our bodies, tasks, and movement contexts. For example, humans can learn to adapt their control policy in walking contexts where the energy-optimal policy is shifted along variables such as step frequency or step width. However, it is unclear how the nervous system determines which ways to adapt its control policy. Here, we asked how human participants explore through variations in their control policy to identify more optimal policies in new contexts. We created new contexts using exoskeletons that apply assistive torques to each ankle at each walking step. We analyzed four variables that spanned the levels of the whole movement, the joint, and the muscle: step frequency, ankle angle range, total soleus activity, and total medial gastrocnemius activity. We found that, across all of these analyzed variables, variability increased upon initial exposure to new contexts and then decreased with experience. This led to adaptive changes in the magnitude of specific variables, and these changes were correlated with reduced energetic cost. The timescales by which adaptive changes progressed and variability decreased were faster for some variables than others, suggesting a reduced search space within which the nervous system continues to optimize its policy. These collective findings support the principle that exploration through general variability leads to specific adaptation toward optimal movement policies.


Assuntos
Metabolismo Energético , Caminhada , Adaptação Fisiológica , Fenômenos Biomecânicos , Metabolismo Energético/fisiologia , Marcha/fisiologia , Humanos , Músculo Esquelético/fisiologia , Políticas , Caminhada/fisiologia
5.
Sci Robot ; 6(58): eabf1078, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586837

RESUMO

Exoskeletons can enhance human mobility, but we still know little about why they are effective. For example, we do not know the relative importance of training, how much is required, or what type is most effective; how people adapt with the device; or the relative benefits of customizing assistance. We conducted experiments in which naïve users learned to walk with ankle exoskeletons under one of three training regimens characterized by different levels of variation in device behavior. Assistance was also customized for one group. After moderate-variation training, the benefits of customized assistance were large; metabolic rate was reduced by 39% compared with walking with the exoskeleton turned off. Training contributed about half of this benefit and customization about one-quarter; a generic controller reduced energy cost by 10% before training and 31% afterward. Training required much more exposure than typical of exoskeleton studies, about 109 minutes of assisted walking. Type of training also had a strong effect; the low-variation group required twice as long as the moderate-variation group to become expert, and the high-variation group never acquired this level of expertise. Curiously, all users adapted in a way that resulted in less mechanical power from the exoskeleton as they gained expertise. Customizing assistance required less time than training for all parameters except peak torque magnitude, which grew slowly over the study, suggesting a longer time scale adaptation in the person. These results underscore the importance of training to the benefits of exoskeleton assistance and suggest the topic deserves more attention.


Assuntos
Adaptação Fisiológica , Tornozelo , Exoesqueleto Energizado , Robótica/instrumentação , Caminhada , Adulto , Articulação do Tornozelo , Fenômenos Biomecânicos , Eletromiografia/métodos , Desenho de Equipamento , Feminino , Marcha , Humanos , Masculino , Músculo Esquelético , Torque , Adulto Jovem
6.
Science ; 356(6344): 1280-1284, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28642437

RESUMO

Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.


Assuntos
Tornozelo , Exoesqueleto Energizado/normas , Modelos Biológicos , Ajuste de Prótese/instrumentação , Ajuste de Prótese/métodos , Caminhada/fisiologia , Fenômenos Biomecânicos , Metabolismo Energético , Humanos , Aprendizado de Máquina , Ajuste de Prótese/normas , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...